APPENDIX E

SHORE-TG-PIER ACCESS RAMP PRELIMINARY DESIGN CALCULATIONS
This appendix contains the following calculations.
m Verification Study — Torsional Flexibility of the Access Ramps

Verified that the preliminary access ramp structure is sufficiently flexible in torsion to
accommodate the roll displacement of the MHP within the allowable stress imits.

a Hand Calculation for Stability of the Upper Chord of a Low-Truss Bridge

Stability of the upper chord is not a problem according to the ealculation.
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Verification Study - Torsienal Flexiblity of the Access Ramps
Assumption

Member sizes: {(Determined by Phil B.)

Chord (top and bottom) =TS 8x8x1/2
Verticals - TS 8x6x3/8
Diagonals - TS 8x4x3/8
Floor Beams - W24x68

Crane Load

Using TMS100 crane (100 Ton crane) ***
Front Axle — 49 kips
Back Axle — 77 kips

Modeling

e Used RISA 3-D
All connections are Moment Connection
Support Condition:
MHP side — One support - Pinned condition
The other support — Only Vertical
Yard Side - One Support — Only Vertical
The other — Vertical and Lateral {Transverse)
¢ (Cranc Load location
@ Mid Span
@ Near End (Back Axcl to be on 1™ Interior Span)
e Support Displacement
To represent the MHP Rolling, Displace One MHP support for 8 (Equivalent of
2 degree Roll)

*% Iny final design the ramp analysis will include analysis for 1407 Crane Loads of MIL-
HDBK 1025/1

Preliminary Size to start Later Analysis

Chord (top and bottom) — TS 8x8x5/8 or TS 10x10x1/2
Verticals - TS 8x6x3/8 or TS10x5x 1/2
Diagonals - TS 8x4x3/8 or TX10x5x3/8

Floor Beams - W24x 104 or W24x 117
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[ QUICK COMPARISON WITH 1407 CRANE AND 1007 (TM9100 CRANE)

Preliminary member size of the ramp bridge structure were based on the TM2100 Crane {1007}.
Member sizes have to be bumped up for the heavier loaded crane, 140T crane.

CRANE:
Front Axie Wi Rear Axle Wt Total WT
1407 26,844 |bs 141,976 ibs 168,820 Ibs
TMS100 49,000 lbs 77,000 Ibs 126,000 Ibs
Factor 0.55 1.84 1.34
{140T/TMI100)

Result of Quick Re-calculation of Loads in the member:

Member Force TMI100 1407 Factor
T & B Chord Max Axial Load {P) 244 K 295 K 1.21
Diag and Vertical Max Shear (V) 92 k 114 k 1.24
Foorbeam Max Moment () 291.5 k-t 512 k-ft 1.76

Note: Factors for the loading is litile less than the Crane Loads, it is because the member
Loads are calculated including the approximate DL of the bridge.,

Preliminary Member Size for 140 T Crane (For Later Analysis):

TMI100 140T
T & B Chord TS 8x8x1/2 TS 8x8x5/8 or TS 10x10x1/2
Vertical TS 8x6x3/8 TS Bx6x3/8 or TS10x5x1/2
Diagonal TS 8x4x3/8 TS 8x4x3/8 or TX10x5x3/8
Floorbeam W24x64 W2a4x104 or W24x117

ENG-001-032088
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STABILITY OF THE UPPER CHORD OF A LOW-TRUSS BRIDGE
{Per Theory of Elastic Stability by S. Timoshenko)

ASSUMPTION

" If the propostion of the compressed chord and verticals of the bridge are such that
the half-wave length of the buckled chord is large in comparison with one panel
iength of the bridge (say the half-wave length is not iess than three panels) a great
simplification of the problem can be obtainad by replacing the elastic supports

by an equivalent elastic foundation”

Vertical Member H= 9.8it
Panel Width W= 10 ft
Total Bridge Length L= 98 ft
Therefore, Half-wave L = 987/2 = 49 ft less than 3x10' = 30 #t ok

Determine Modulus of the equivalenet elastic foundtion

B= Ro
C
Ro = 1
an3 + {a+h)r2 d
3EL 1 2B 2
a g8ft-IFft{tlocLof BM) - 1" {(1/2 BM) = 5.8ft
= 1.0t (1/2 BM)
C= 10 ft
= 20 ft
1 1= i for Vertical, TS 8x6x3/8 => Ix=383.7 in™4
2= | for Fipor BM, W24x68 => ix = 1830 in”4
FHo = 1 = 16.3 kip/in
(5.8'x12)"3 + (6.8 x 12)72(20' x 12)
(3)(29000ksi)(83.7in"4) (2)(29000ksi}{1830in"4)
B= 16.3 kip/in =0.136 kifin*2
(10" x12) In

ENG-001-032008
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EX = e b AL P e Date
Determine Reduced Lengih, |
Use Table 9 of Ref - Table for Calculating the reduced length, L
B
16 El
B= 0.136 kip/in"2
| = 9.8 x12= 1176 in
I chord = 131 in™ (TS 8x8x1/2)
Therelore B Ih = {0.136kip/in"2) (1176 i) = 4279
16 Ei 16 (29000 ksi}{131 in~4)
Table 9 goes up to 1000. Let's use L/l = 0.174 Conservativel!!
L ~=(987(0.174) = 17t
Determine Critical Load
go L = (pir2 E 1)
4 critical L2
=" ping (28000 ksi) (131 in™)
(17 ttx 1212
= 901 kips L.ess than P analysis = 230 Kips

ok

ENG-003-032008
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THEORY OF ELASTIC STABILITY

784K}
(gl = T

This value practically coincides with that given in (83},

By using the energy method we can consider also a vertical bar hinged
at the ends and submitted to the action of its own weight ¢f in addition to
compressive forces P applied at the ends (Fig. 77).  The critical values of P
can be represented by the eguation ’

mBEl

P = 5 (85}
in which the numerical factor m depends on the value of the ratio
2
n =gl =+ i
Soveral values of the factor m are given in Table 8.
TasLs 8.—VALUES OF 1IN 1. (85)
n 0 .25 | 0.50 0.75 1.4 2.0 3.0
m xt 8.63 I 7.36 | 6.08 | 477 | —.657 ] —4 04

1t is seen, from this table, that a satisfactory approximation for the eritical
load P is obtained by assuming that one-hall of the weight

P gl of the bar is applied st the top, .., by taking
b P. = =Bl _ 4l
b S 2
L When n is 2 or lerger, P, is negative, which indicates that
in such cases tensile forces P should be applied at the ends to
prevent the bar from lateral buckling.
!,{Jl The energy method can be applied advantageously in vari-
ous cases of distributed compressive loads seting on a bar.
P ol In this way the integration of equations with vartable roefli-
Fio. 71 y Legrs U ariabile coefli

cients, requiring the use of infinite serics, is replaced by the
simple problem of finding the minimum of a certain expression, such as the
vight side of Eq. (r) above. By increasing the number of terrs in the expres-
sion for the deflection curve, as in Eq. (n) above, the sccuracy of the solu-
tion ean be increased, although the first approximation is usually suflicicatly
aceurate for practical applications. Tater, we shall apply this method to a
discussion of the stability of the upper chord of a low-truss bridge.

24. Stability of the Upper Chord of a Low-truss Bridge.—In a low-truss
bridge (sometimes called 2 pony truss), there is no bracing in the upper
horizontal plane (Fig. 78) and the upper chord s in the condition of a com-
pressed bar, the lateral buckling of which is resigted by the elastic reactions
of the vertical and diagonal members. Af the supports there are usually
frames of considerable rigidity so that the ends of the chord may be con-
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BUCKLING OF CENTRALLY COMPRESSED BARS 123

sidered as immovable in a lateral direction. Thus the upper chord may be
considered as a bar with hinged ends compressed by forces distributed along
its length and elastically supperied at intermediate points. A general
method of solving preblems of this kind is discussed in Act. 20

However, the amount of work necessary to obtain the eritical valie of the
compressive force inereases rapidly with the number of elisiic aupports.t
The stability of the compressed chord can be increased by increasing the
vigidity of the lateral supports. For a constant cross section of the chord
and a constant compressive force, the minimum rigidity, at which the

supports begin to behave ag though they were sbsolutely rigid, is found from
Erq. (72} of Art. 20 (see p. 107). If the proportions of the compressed chord
and verticals of the bridge (Fig. 78) sre such that the hall wave length of
the buekied chord 1s large in comparison with one punel length of the bridge
(suy the half-wave length is not less than three panels), a great simptification
of the problem can be obtained by replacing the elastic supports by an
equivalent elastic foundation (see Art. 20} and replacing the concentrated
compressive forees, appiied at the joints, by a continuously distributed load
Assuming that the bridge is uniformly loaded, the com pressive forees trans-
nuitted to the chord by the diagonals are proportions! to the distanees from
the middle of the span, and the equivalent compressive load distribution
is as shown in Fig. 78¢ by the shaded areas.

In caleulating the modutus 8 of the elastic foundation, equivalent to the
elastic resistance of the verticals,? it is necessary Lo oestablish the relation
between the force R, applied at the top of & vertical {Iig. 786) and the
dellection: that would be produced if the upper chord were removed. It

! Several numerical examples of caleulations of the stability of 0 ecom-
pressed chord as a bar on elastic supports can be found in the book by H
Miiller-Breslan, “Graphische Statik,” vol. 2, part 2, p. 336, See also a
paper by A. Ogstenteld, Beton und Eisen, vol. 15, 1916.

2 Sinee the diagonals are tension members, their rigidity 1s small in cone
parison with that of the struts and can be neglected.
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only hending of the vertical is taken into account, then

_ Ra?

T 3Ry

where 11 iz the moment of inertia of one vertical, Taking into account
the bending of the floor beam, and using notations indicated I the figure,
we obtain

&

;. Bt Rla 4 by
3En 2Bf
where [; is the moment of inertin of the cross section of the floor beam.
The force necessary to produce the deflection 5 equal to uaity is then

1
@ (@A)
3BT, 2E1,

o =

znd the moduius of the equivalent elastic foundation is

_E
B

B8

where ¢ 18 the distance between verticals.

In this manner the problem of the stability of the compressed chord of
the bridge is reduced to one of buckling of & bar with hinged ends, sup-
ported lateraily by a continucus elastic medium and axially losded by a
continuous load, the intensity of which is proportional to the distance from
the middle.t  The problem can be solved by taking the differential equation
of the deflection curve of the Luckled bar and integrating it by the use of
infinite series ns was explained in the previous article. The same result
ean be ohtnined more easily by using the energy method. The defiection
curve uf the buckled bar in the case of hinged ends can be represented by
the secies

y o= sin?q‘-—agsin%-{#—assin:};—x—i- Sl {a)
Assuming that the cross seetion of the bar is constant along its length,
and denoting by # the modulus of elastic foundation, which is also eonsidered
as constant, the strain energy of bending of the bar,? together with the

! In this form the problem of the stability of low-truss bridges was first
discussed by F. 8. Jasinsky, loc. cit., p. 100. See nlso French translation.
Some corrections of Jasinsky’s results have been discussed by the writer by
using the energy method, loc. cit., p. 82,

2 In applying the energy method, more aceuracy in the approximste
golution can be obtained by using for the strain encrgy of bending the
expression [ M? dz/2H] instead of (BI/2)[(d%/de?)%x (see p. 81). This is
especially true in the case when only the first approximation is cadeulated.
In the present problem, however, several eonsectitive approximations will be
caleulated.  The simple expression (B) for strain encrgy possesses certain
advantages in making these caleulations.
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BUCKLING OF CENTRALLY COMPRESSED BARS 123

strain encrgy of the foundation, is (see Art. 20)

o= @ \ n o= o
:
AV = E‘fv{, 2 niat, +% z at,. (b
re=1 n=1

In calculating the work produced by the distributed compressive load
during bending, we note that the intensity of this load at any cross section,
distance z from the left support (Fig. 78¢c), is

q = ‘1(1""2'; {e)

where ¢ Is the intensity of load at the ends. For a truss with parallel
chords and a large number of panels, it ean be concluded from eclementary
stattes that we can assume for the maximum intensity of the axial lomd
(Fig. 78c)
go = ‘%%r

where ) i3 the total load on one trmss and b the depth of the truss.  Con-
sidering an element of the upper chord between the two consecutive eross
sections mn and mmy, the axial load to the right of the cross section mn
will be displaced toward the immovable support A, owing te the small
inclination of this element during buckling, by the amount §(dy/dz)%dz
and will produce the work

----- Gy s e - (8

The total work produced by the eompressive load during bending is

_ dy
o’ 21 x(l :::)(dr) di.

Substituting in this expression the series (u) for y and using the formulas:

i iz iz 4 mrz I {3
T cost —— dn = z? eog? = g = o A g
J(; I i j; i R et

¢ mux .
f v eos 2 T Y cos e dx = {}, when m -+ n is an even vamber;
¢ na max 20 wm?* + n* .
T Cos e Toos TS dp o - 25 LT when m 4+ nis an odd number;
0 { 7 (mz — n?}
l nr nirL dx 21,"‘ mt 4 nt (—1)min
( 5 - ‘,... ' .‘ ——— ———— At e =
0t i #? {m? — ni)? !

we finaily ohtain

AR rﬂn BN nm(m? - n?) n
n m

where the double series in tho parenthests contains ondy terms in which the
sum {(m -+ #)is even and m ig not equal to n. Substituting () and (d)
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Eq. {64), we obiain for the maximum compressive force at the middle the

following expression:
« 5
tgr, e R
p E wut by Z
5= = e ©

P St 4) S

Now, the problem is to find such relations between the coeflicients
@i, Gz, @s . - . 85 to meke expression {¢) & minimum, Proceeding as in the
previous article and setting equal to zero the derivatives of this expression
with respect to ay, @z . . . , we finally arrive a¢ & system of homogeneous
linear equations in @1, &2, . . . of the {ollowing type:

[ 42 = 2a(BF 1) Jou lh‘a%a T Lo, ()

in whieh, for simplifieation, the following notations are used:

[ B st
S S T @

The summation in the second term of Eq. () is extended over all values of m

different from » such that (m -+ #) is an even number.  Thus, Eq. {f) can

be subdivided into two groups, one containing the coetficienta a. with all

values of m taken odd and the sccond with all values of m taken even.
The equatiens of the first group are:

[(1 +‘Y)"r e 20(‘—:3 - 1)}(}1 +a( li(1.,1 + Q + 1*25(17 + - ) = {),
5 ‘ 04
B + 134+ vnt — 2a(3e? — e + a(zg‘f’aa + -350’ ) =0
(I‘)garh +?—Z~"aa; + [(5‘ + yiw? — .er(ia; wt - I)Jc.zs - a(l—fgs— ar + - >
= (];
1750{ o, -+ Goqa T3 -{- 5(10,5 -+ 1.(7‘ B L 2(1(.'1791:2 — _l)]a-,v +
72 8 3
=
*)

The equations of the second group are:

[(2" +y)wt — 2‘1(%’”2 - 1)]“ + (“;O ay liflo SR ) =~ 0;

1 @
"—g—ecxtlz -’r[H‘ + v)r? — 2a i; - 1)1{14 + a( Lo+ ) = 0; @)
l—ziaaq 41 248.1:;, + [(64 oyt - 2(1(3; v _ 1)]‘% o =0
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BUCKLING OF CENTRALLY COMPRESSED BARS 127

Huckling of the chord becomes possible when one of the above two systems
of equations gives for coeflicients am a solution different from zero, ie.,
when the determinant of systemnr (&) or of system (¢} becomos equal to zero.
The system (4} corresponds t0 a symmetrical shape of the buckled bar. "The
system (1) corresponds to an unsymmetrieal shape of the buckled bar.

Let us begin with the case where the rigidity of the clastic medium is very
small.  In this case the deflection curve of the buekled har hag only one half-
wave {see Art. 20) and is symmetrieal with respect to the middle. Equa-
tions (k) should be used. The firss approximation is obtained by taking
only the first term in the series (2} and putting as = a5 = . . . = Then,
the first equation of () will give for @, a solution different froma zero only if

2
(1 + 7)rt — m(%» - 1) = 0,
from which

o= 2U A+
24t — 1)
Using notations (), we finally obtain

Y §EDY 0
4 /.. 22 204t ~ I}

If there is no lzteral elastic resistance and if the bar is eompressed by axial
load distributed as shown in Fig. 78¢, the quantity y in Bq. (7) becomes zern
fsee notations (¢)] and we obtain

BT
("'{T‘)l) ~ 21552 (k)

Thua the eritical load is more than twice as large as in the case where the
bar is compressed by the loads applied at the ends.

To get a better spproximation for the critical compressive foree, we tnke
the two terms o expression {a), with coefficients a, and aa. The corre-
spoading two equations, from system {(A), are

. 2 ;
[ b e — 20((1‘; - 1)](}: + %;Iaag = {);

!Zgw.m + 187 + y)a? — Z2a{3r? — gy = Q.

Taking v equal to zero and equating to zero the determinant of the above
two equations, we ohtain

) wt 3 15\2
[r"' B Ea(—% - i)][ 8ln? — 2ee(3x? — 1)] - ('-2— ot = (.

Solving this equation for a, we obtain
! o
« = 2.06; (‘!;f) - 206" L @
By using three terms of the sories {2} with the coefficients a;, az and a;

and the three equations of system (4), & third approximation can be oalen-
lated.  Such ealcwlations show thai the error of the second approximation,
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given by Eq. (), ia less than 1 per cent so that [urther approximations are of
ne practical importance and we can put

(ol _ g pemtBL . nEL
(4 I R (X T
Thus the reduced length in £his cuse is

L = 0.696[

In. a similar manner the criticsl load may be calculated for a chord with
staall Iateral elastic reactions (v < 3). Where a greater restraint is
supplied by the vertical members of the truss, the buckled form of the chord
may have two half-waves and we obtain an inflection point at the middle of
the bar. To calculate the eritical load in such a case, the system (Z) should
be used. With a further increase of -y, the buckled bar has three half-waves,
and we must again turn to the system of equations {(h) in ecalculating the
eritieal value of the compressive foad. In all these cases the critical load
can be represented by the equation

gl T
(qi) = i (86)

in which the reduced length L depends on the rigidity of the elastic founda-
tion. Several values of the ratio L/ are given in the following table:

Tasne 9.—TarLe ror Cavcvnarive Tue ReEpvcen LenetH L

wn

¥
sl G RT ¢ 5 1¢ 15 |22 Hi Bl LO0 1162 8| 200 | 300 § 500 11,000

,,,,, R S O ,M,,,I SRR OO S (RS SN S N

1
LAt 0. 696|0. 524|0, 4430 3960 3630 1240 200.0 2500 246[0 2250 2040 174
‘ i

It is seen from the table that, when the rigidity of the elastic foundation
increases, the ratio L/l approaches the values obtained before for a uniformly
compressed bar (see table on p. 11HL

The method developed above for the cuse of a bar of uniform cross
section supported by an elastie medium of a uniform rigidity along the
length of the har can be extended to inelude cases of cherds of variable eross
section and cases where the rigidities of the efastic supports vary along the
length.1

256. Buckling of Bars of Variable Cross Section.—An examina-

tion of the bending-moment diagram for a buckled bar indieates -

that a bar of uniform eross section i3 not the most economical

1 Several applications of the energy method in design of through bridges
are given in the paper by 8. Kasarnowsky and D. Zetterholm, Der Bauin-
gemieur, vol. B, p. 760, 1927. Sec also papers by A. Hrennikoff and by K.
Kriso in Publicalions of the International Association for Bridge and Structural
Engineering, vol. 3, 1035.
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